
10I

1LEVE

.Mae



i•-

K-CONNECTIVITY IN RANDOM UNDIRECTED GRAPHS

BY

I . .,

John H. Reif and Paul G. Spirk is

-- '

Ii

II

etem-e.19-81 "

* ~Accession For'
NTIS W1A& -DTIC_:iAi
Unafnnguso@.

__ DTIC
Avail aSnd/o DEC 2 3 190t

Dist SpecialSD

DiNTIXBYrIO ST~ATEET"Approved for Pubiic relecis
Distribution Unlimitedt

- -- - --.- ----- --- --.



r-b. -- T"'RI

REPORT DOCUMEOTATION PAGE R CADOiMLSTRUCIN o Rs
t. REPORT NUMBER 2. GOVT ACC7 SI N. 3. RECIPIENT'S CATALOG NUM'iJER

4. TITLE (and Subtitie) S. TyPE OF REPORT & PERIOD COVER-DO

K-Connectivity in Random Undirected Graphs Technical Report -

6. PERFOP41NO ORG. ACPORT NUM8ER
TR-19-81

John 11. Reif 
0148-064V

Paul G. Spirakis 
!-

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PRQJ,•CT. TASk " .

AREA% A WORK( tNIT NUMSERS 4
Harvard University

Cambridge, MA 02138.

I° CONTROLLI. G OFFICE NAME AND ADDRESS 12. REPORT OAT,5 .a_

Office of Naval Research 1981

800 North Quincy, Street 13. NUMBER OF rAJES
Ar.ingtaon, VA 22217 14i•

14. MONITO RING AGENCY NAME A AnDRESS(Il difterent fom Controlling 01
4
c6) 1S. SECURITY #:LASS. (t1 this report)

1j', ,ame as above

ISa. OECLASSIFICATION/OOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (oft thi Report)

unlimited DISTRIBUTION 4TATEMENT AApproved for public releasq

Distribution Unlimited
17. DISTRIBUTION STATEMENT (o* the abeetact entered In Block 20. II dilffrent from Report)

uml imi ted

16. SUPP,.EMENTARY NOTES

19. KEY WORDS (ContInue an reverse side it necessary arid idenittly by block number)

connectivity, random graphs, k-blocks

20. ABSTRACT (Conttnue on reverse side It neces•art said Identity by block numb.,)

See reverse.

"81 2w2 117
DD I JAN73 1473 E10'IION OF I NOV 65 IS OSSOLI TE

SECURITY CLASS1FICATION OF THIS PAGE. ($vk•an Data ntore) .

t :.: -



Unclasuified

I6.ko.iD4TY CLASSIFICAT ION OF THIS PAG~IE1hoh al flwefre fIV)

20.

This paper concerns vertex connectivity in random graphs. We present

results boundin~g the cardinality of the biqqcst k-block in ranri-:ru graphs of

thie G 7model, for any constantn valuo of k. Theqe results qenneraiize,

Y those of [FrS~s, Rc'nyi , 601 and [Karp, Tar jan, 840) for k ýýI and 2. WoVftirtlirmuoro prove-- here that the card].hal~it\ of the biggest k-block is A n-locjn

'~with probability 2ýA I- frp>,clMunad c' k We alqo ihow

that if p;ýc(k) -Z with c(k)> 232k.' then the qraph G is k-connected

with probability i- d (k)>1.

K4~.
Unlssfe

T SS11Ct~jt4 II2 ~~ 7PG:,*_ý.&MF~fd



K-CONNECTIVITY IN RANDOM UNDIRECTED GRAPHS*

by

John H. Reif and Paul G. Spirakis

Harvard University

Aiken Computation Laboratory

Cambridge, MA 02136

4I

*This work was supported ir part by the Nati..onal Science Foundation Grant
NSF-MCS79-21024 and the Office of Naval Research Contract N00014.-80-C-0674

I . I

,,-iw - -



1. Summary

This paper concerns vertex connectivity in random graphs. We present

results bounding the cardinality of the biggest k-block in random graphs of

the G model, for any constant value of k. These results generalizefnip

those of [Erdos, Renyi, 60] and [Karp, Tarjan, 80] for k=l and 2. We

furthermore prove here that the cardinality of the biggest k-block is >n-logn

with probability )l-n- 2 for p>c1 (k)/n an1 cW(k) >k+ 2. We also show

that if p)c(k) logn with c(k) >32k2 then the graph G is k-connectedn n,p

with probability > 1 _2 n-d' (k), d'(k)>1.

2. Introduction

A graph G = (V,E) consists of a finite nonempty set V of vertices

together with a prescribed set E of unordered pairs of distinct elements

of V (set of edges). (We allow no loops neither multiple edges).

The vertex connectivity k(G) of an undiiected graph G is the minimum

number of vertices whose removal results in a disconnected graph or a

trivial graph (consisting of just one vertex). Note that we follow here

[Matula, 78] in defining k-.connectivity, which we find to be most natural.

[McLane, 37] gives a (somewhat different) definition of triconnectivity so

that he can have the theorem that a graph is planar if its triconnected

components are. [McLane, 37] shows that his triconnected components are

homeomorphic to 3-blocks. Vertex k-connectivity seems to be a fundamental
14

property of a graph and ha; numerous applications to other graph problems

(such as planarity testing, routing problems etc). It is relevant to

questions concerning vulnerability of a graph to separation. Cluster

analysis methods considering the nature and inherent reliability of proximity
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data use the theory of k-connectivity to find groups of likes and dislikes

in object pair association graphs ([Matula, 77], [Matula, 78] also

[Jardine, Sibson, 71]).

A k-block of an urndirected graph G is a maximal k-connected sub-

graph. A k-block is triviaZ if it has only one vertex [Matula, 78]. Clearly,

each k-block consists of >k vertices or it is trivial.

[Matul.a, 78] examined certain properties of k-blocks in graphs

(number of them, separation le~na) and [Nrdos, Renyi, 60] and [Karp,

Tarian, 80] examined the distribution of the size of the bigge 1 and 2-

blocks in random graphs G with p > - and G with N > cn.np -n nN
They proved that there is a giant k-block for k=1,2, with exponentially

I lo g n r ~ , R e y 0decaying probability of error. For p > E n rds, Renyi 60J
2 n

showed that G becomes almost surely 2-connected.

In our paper we examine k-connectivity in the model G definedn p'
precisely as follows: For 0 < p < 1 and n > 0 let G be a random

variable whose values are graphs on the vertex set {l, 2, ... , n}. If

e ={u,vi and u,v, E{l, 2, ... , n} then Prob{e is an edge} = p and

these probabilities are independent for different e.

We prove that for each constant k > 0 and for each E (0 < e < 1)

and a > 1, there is a k-block of cardinality > En in G with
n,pp c(k> n with probability > 1 - e We furthermore prove that

nn
for any k > 0 and 0 < m < I there are constants c(k), d(k) > 0 such

2k
that the size of the biggest k-block of G where p ) c (k) lgn- isn,p n-md Wkequal to n-m with probability n . rom that we got as corollaries,

that there are c(k), d(k) > 0 and d' (h) > 1 such that the size of

1dd (k) og)
the biggest k-block of G is > n-log.n with prob > 1-2nn,p

and that G is k-connected with prob > 1-2nd' OK)
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Final]y, we prove that for any w •o (n) 3cW(k) > k+2 and a function

c (k) log n
t(n) > such that, if p > t(n) then the biggest k-block

- k t(n)m

of G has size > n-m with probability > 1 - n /e a as i

c (k)
n - •. A corollary is that if p > -- then the biggest k-block of

-2
G has cardinality > n - logn with pr'obability > 1-n-2 Thesen,,p

1

II
results were known by [Erd~s, Renyi, 60] only for k=1 and c(1) > 2.

3. Prperties of k-blocks

PROPOSITION 1 [Matula, 78o For each k>0, any two k-blocks have no more

than k- -1 vertices in common.

DEFINITION [Matula, 78] A separatioi- ;et S of G is a vertex

subset S C V(G) such that G - S is disconnected. A minimum sep-a-at-irg

et S C V(G) has ISi -k(G).

bi DEFINITION Let G be a graph (V,E) and let S a V be a set of vertices.

Then by <S> we denote the subgraph induced by S on G.

LEMMA 1 [Matula, 78] (Block separation lemnma) Let S C V(G) be a

minimum separating set of the noncomplete graph G with <A1>, <A2), ....

.<A m, m > 2 the components of G - <S> and let k > k(G) + 1. Then

each k-block of G is a k-block of <A IJS> for precisely one value of

i, and each k-block of <A.LUS> for every i is a k-block of G.

For a proof, see [Matula, 78].

REMARK [Matula, 78] shows that for each k > 1 the total number of

nontrivial k'-blocks for 1 < k' < k, is < for any graph G

with n vertices.
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4. Giant k-blocks in Random Graphs

In the following we introduce special notation for very large subgraphs.

For each C, 0 < C < 1, a subgraph H of a graph G of n vertices

is called an £-giant of U if the cardinality of the vertex set of H

is > en.

DEFINITION: Given a vertex set S C V in the graph G = (V,E), the

boundary v'ertices of S is the set B(S) - {uESI 3vEV-S such that {u,v}E E }.

DEFINITION: Let X be a random variable whose values are the cardinality

of the maximum k-block of instances of Gn,p. Let Fn,p,,k(a) = Prob{X < a)

be the distribution function of X.

THEOREM 1: For every £ on (0,1),Ca > 1 and k > 0 there is a

c - a•c=c(k,e,a) > 0 such that, for P>n-, F (En) < e . In other words,
n n,p,k

the random graph G with p > S has an £-giant k-block with probabilityn,p -- n
-an

at least 1 - e . To prove this theorem, we shall need the following

definition and lemnma.

DEFINITION: If G = (V,E) and A,B are subsets of V, then

E (A,B) {e {u,v}EEIuEA and vEB}.

LEMMA 2: For any al, Elf C > 0 where E, + E2 1 and a > 1 there

are constants c, £3, £4 > 0 such that a random graph G with p >
3 4-ltn

has the property (*) with probability > 1 - e

(*): If A,B are any two vertex subsets of V such that IAI > 'Ei:

IBI > te2 nj and A O B = 0 then I E (A,B) > 0.

PROOF OF LEMMA: The complement of (*) is: "There are two vertex

subsets A,B such that IAI ± Lhl nj, _BI L£2 r n An B 0 and
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E(A,B) - 0". Clearly

Prob{'E(A,B) 01 < (1 P)CIEn 2 n )1 <2nF-1,
1 4nSince there are at most 4 ways to select these A,B, and upper

bound on the probability of the complement of (*) is

X:! Prob{E(A.B) = 0}
all A,B

-C )n' < -<t

for

a + loge 4c >

Now we return to the proof of the Theorem 1. Let G (V,E) be

an instance of the random graph G . Let 4i be the event "G has noSn,p 1

E-giant k-block". Assume event 41 be true in the instance G of

G n,p. Let initially the set A = 0. Do the following construction just

until A has cardinality > E' n/2, where e' = min(e,1-e).

(a) Find a minimum separating set S of G. Let <A1 >,..., <A >

m >.2 be the components of G-S. Let <A.> be the smallest of them.

Let A + (A. U S)UA. Let B be the union of the rest of the components
1

and let G 4 the graph induced by B U S. If JAI < E' then go

to (a).

By the above method of constructing A, each addition of a component

in A adds at most k-i vertices to B(A) (i.e. the vertices of the



cut) and at least one vertex to A - B(A) (by the block separation lemma

and by the fact that k-blocks have > k vertices if they are non-trivial)

or causes the transformation of a boundary to a nonboundary vertex. Thus,

at least 1,/k of the vortices of A are not in B(A).

By this construction, finally the k-blocks of G are going to be

separated. Because all k-blocks have been assumed to have cardinality

< en, we will finally have

C1 n JAI (min + En, E' 7

So

IA - B(A)l_> min( ,l-) n
2k

and

IV -I )]

(obviously IV - Al > 0 for any c on (0,1)). Let Y A - B(A) and

Z = V - A then IYI > C1 n and IZI _> C2n where 1 '-- 1-- 2k

£2 I Mir [(E + j,) (3E:1/4)] and E(YXZ .0 by construction

Hence, there are disjoint sets Y' a Y and Z' C Z such that
IY'I = £int Iz'l = E2 n and E(Y',Z') 0. Call 62 the above

event. We have just shown 4i implies (2 So,

prob{& 1 1 < Prob{62} <

by ,enmma 2.

:11



SC1 + loge4

NOTE- According to Lenma 2, any i > 1 and c satisfy
1 2

the theorem. Replacing £C., 2 with the expressions found, we get

(- + log 4 A))> _ 2 k e1 -

(l-min(c 2 ý 4

5. k-blocks of dense random graphs.

This section considers edge density p l c " n

KTHEOREM 2. For any constant integer k > 0 and any n and m <

there are constants c(k), d(k) > 0 such that the cardinality X of the

biggest k-block of the graph G with p > c(k) satisfies the
nep n

property

Prob{X -n-m < n-md(k)

PROOF: Let G be an instance of G and let the event X = n-mn,p

be true in that instance. Let A be a k-block with IAI X. For

every uEV-A, we have that

({u,vIEF(G) vEAj1  k -1

(since, otherwise u would belong to A). Let

A IvEA : uEV-A {uvl EE(G)l

then

1AlJ < (k-l) IV-AI = (k-l•r
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Let A2 =A -A. We get

JA2 1 > n-m- (k-l)m = n-km

Furthermor-,, there is no edce from V-A to A2.

Let t be the above event. The probability of f is bounded above by

u(m,n) (,n) (n-m) (l-p) (n-km)m

But (l-p) < (1 c logn) < e-c log-n

since p clog n

n

Also (n-mr < (n-m )-< k-1)m log (n-m)

\n-kmJ (k-l)mn

since (k-l)m < 2-m2

and (n) < emlogn

since m < n
2

Thus u(n,m) < n-d(nm) where d(n,m) =

cm (m (k-m- (kl)mlog(n- m)

>cm ( h- -in- (k-i.)rn

> m - km (by our assumption).

-i C

So, d(n,m) > MdC() where d(k) - k. Note that d(k) > 0 iff

"c(k) > 2k.

So, Prob(W) < nm d(k)

IL _
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THEOREM 3: For any constant integer k > 0 and any n >> k there is

a constant c(k) > 0 and a d(k) > G such that the cardinality X of

the biggest k-block of the graph GnCp with p > c(k) n satisfies -

the property

Prob{X < n - logni < 2n(l-d(k)log n)

PROOF: By using theorem 2, we get

n/2k
f n -md~k)
Prol~ogn< - =m=logn n

with d(k) c(k) k > 0 for c(k) > 2k.
2"

Son n I < ~-log n.-d(k) < -d(k)lognSo, Prob. log n < n -X < -- < n •n n

.11 Also, by theorem 1 and using E - we get

Prob n - X > -- < e- aon

c• + loge4 4(
for any 1 > land c(k) > . - e and Ei 2  Tk1 •12 2-f g

.x + loge 4\

So, for c(k) > max(2k, -lg

or c (k) > (ac•+ loge4)16k 2

we get

Prob{logn < n - X} < + nlOgn. d(k)

or

Prob{X < n - logni < 2 nl-d(k) logn

for sufficiently large n.

03

I J _ __<•
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NOTE: Theorem 3 says thAt for p > c(k) the graph G has a k-
n n,p

block of size > n- log n with probability limiting to 1 as n-•.

THEOREM 4: For any constant integer k > 0 and n >> k there are constants

c(k) > 0, d'(k) > 1 such that the random graph G with p > c(k) logn
n,p

is k-connected with probability

d'(k)

PIROOF: Let R n - X where X cardinality of the biggest k-block of.a2 +Ioa 4 i
-a e2-,with

By using theorems 2, 3 and c(k) > 2 + maxek, with
£i( 2  - we get that -

Prob{1 < R} < V'n +n .

Let d'(k) k k- 1.-2

Then d'(k) > 1 for c(k) >2 + max 2k, +io2 e)

and

-d' (k) -d(k)
P.:ob 11 <_ R} <en+ n < 2nd'.

for large n.

Uence

-a '(k)

Prob{R 0} > 1- 2n

'I]



7. -T-M.-i

6. k-blocks for intermediate edge densities.

Let £ < p < c'og We wish to study the k-connectivity of this
n -a

class of rar.lom graphs.

THEOREM 5- For any constant k > 0 and any m = o (n) there is a constantcl(k) I ogn

C (k) > 0 and a function t(n)> c such that, if P >
I ~mn

then if X is the cardinality of the biggest k-block of G thenn,p

k
Prob{X < n - m} < n n 0 as n-•-•.

e t(n) m

PROOF: Assume that in the instance G of G the cardinality X ofn,p

the biggest k-block satisfies the inequality X < n - m. Then, we can find

two sets Y, Z (as in proof of theorem 3) such that IJY = m, IZi = n - km

and no edge between them. This event is above bounded by the probability

1- q where

q = Prob{for every pair of disjoint sets Y,Z of

vertices of the above sizes, there is at least

one edge between Y, Z.}

We shall show q - 1 as n + •. Let us enumerate all possible pairs of

sets of vertices of the above sizes. Call them

(YgFZQ, Y2 ,Z 2), ... , (Yg ,Z

where 
(:) (m gm

= ) Onkml ~

We have that q
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Prob{E(Y 1Z j• 0 A *... E AE(Ygzg) 1 0

where E(Y,Z) = set of edges between Y,Z.

So, by Baye's formula, q

Prob E(Y.,Z,) V q Prob E(Y2 z2) . ... Prob - - 1
We need the following enumeration lemma:

SLEMMA 3: For every two sets Yi.Z having at least one edge e between

[' them, there are at least

pairs of sets of sizes m, n- km which also have this edge between them.

This lemma can be proved easily by taking out the two vertices of e and

enumerating.

COROLLARY: There is a suitable enumeration of the zets in the q product

such that for every term i not equal to 1 the next gl or more.

terms (conditioned on the existence of an edqe from Ai to B.) will be

equal to 1.

Hence, the value of q is

B >_ I,)rob {E (YI Z-I

But

g /gl <_ )k as n .
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Hence,

q• [i (l-p m (-km)(n/m)

>I--~ ~ i (n-km

kr ~ ~ 1(n/ n /m

ork

q - ;Pm (n-krn)(h

k

o r

q >1 ;[(n)m k klog n] > -

i f c (k) >k +~ 2.

(since t(n) m > c (k) log n > (k+2) log n)

So, -

Prbj n m e<;t (n) m k lo-j 0 sn C

for the above values of k(k)

COOLLARY: For mr logn and t(n) > cl(k) > k + 2 we get: For each

ck > 0, the graph G with p > cl(k) a!-•n,p , I as a k-block of cardinalityn

> n logn with probability > 1 - n-.

!I
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